
Flair

Alison Tang, Cameron Soulette, Jeltje van Baren, Kevyn Hart, Eva Hrabeta-Robinson, Catherine Wu, Angela Brooks

Sep 13, 2023

CONTENTS:

1 Installing Flair 3

2 Modules 5
2.1 flair align . 5
2.2 flair correct . 6
2.3 flair collapse . 7
2.4 flair quantify . 10
2.5 flair_diffExp . 12
2.6 flair diffSplice . 14

3 Additional programs 17
3.1 diff_iso_usage . 17
3.2 diffsplice_fishers_exact . 17
3.3 fasta_seq_lengths . 18
3.4 junctions_from_sam . 18
3.5 mark_intron_retention . 18
3.6 mark_productivity . 19
3.7 normalize_counts_matrix . 19
3.8 plot_isoform_usage . 19
3.9 predictProductivity . 21

4 File conversion scripts 23
4.1 bam2Bed12 . 23
4.2 bed_to_psl . 23
4.3 psl_to_bed . 23
4.4 sam_to_map . 23

5 FLAIR2 capabilities 25
5.1 Performance increases . 25
5.2 Variant integration . 25

6 Other ways to run FLAIR modules 27

7 Other environments 29
7.1 Other methods (not recommended) . 29

8 Testing flair 31

9 Example Files 33

10 FAQ 35

i

10.1 1. Flair collapse uses too much memory, what can I do? . 35

11 Cite FLAIR 37

12 Indices and tables 39

ii

Flair

New: Flair can now be conda installed using

conda create -n flair -c conda-forge -c bioconda flair
conda activate flair

FLAIR can be run optionally with short-read data to help increase splice site accuracy of the long read splice junctions.
FLAIR uses multiple alignment steps and splice site filters to increase confidence in the set of isoforms defined from
noisy data. FLAIR was designed to be able to sense subtle splicing changes in nanopore data from Tang et al. (2020).
Please read for more description of the methods.

It is recommended to combine all samples together prior to running flair-collapse for isoform assembly by concatenating
corrected read psl or bed files together. Following the creation of an isoform reference from flair-collapse, consequent
steps will assign reads from each sample individually to isoforms of the combined assembly for downstream analyses.

It is also good to note that bed12 and psl can be converted using kentUtils bedToPsl or pslToBed, or using bed_to_psl
and psl_to_bed provided in flair’s /bin directory.

CONTENTS: 1

https://www.nature.com/articles/s41467-020-15171-6
https://github.com/ENCODE-DCC/kentUtils/tree/master/src/hg/utils

Flair

2 CONTENTS:

CHAPTER

ONE

INSTALLING FLAIR

The easiest way to install Flair and all of its dependencies is via conda:

conda create -n flair -c conda-forge -c bioconda flair
conda activate flair
flair [align/correct/...]

For other methods, please see the Other environments section

3

Flair

4 Chapter 1. Installing Flair

CHAPTER

TWO

MODULES

flair is a wrapper script with modules for running various processing scripts located in src/flair. Modules are
assumed to be run in order (align, correct, collapse), but can be run separately.

2.1 flair align

usage: flair align -g genome.fa -r <reads.fq>|<reads.fa> [options]

This module aligns reads to the genome using minimap2, and converts the SAM output to BED12. Aligned reads in
BED12 format can be visualized in IGV or the UCSC Genome browser.

Outputs

• flair.aligned.bam

• flair.aligned.bam.bai

• flair.aligned.bed

2.1.1 Options

Required arguments

--reads Raw reads in fasta or fastq format. This argument accepts multiple
(comma/space separated) files.

At least one of the following arguments is required:
--genome Reference genome in fasta format. Flair will minimap index this file

unless there already is a .mmi file in the same location.
--mm_index If there already is a .mmi index for the genome it can be supplied

directly using this option.

5

https://github.com/lh3/minimap2
https://en.wikipedia.org/wiki/SAM_(file_format)
https://genome.ucsc.edu/FAQ/FAQformat.html#format14
https://igv.org/
https://genome.ucsc.edu/cgi-bin/hgGateway

Flair

Optional arguments

--help Show all options.
--output Name base for output files (default: flair.aligned). You can supply

an output directory (e.g. output/flair_aligned) but it has to exist;
Flair will not create it. If you run the same command twice, Flair
will overwrite the files without warning.

--threads Number of processors to use (default 4).
--junction_bed Annotated isoforms/junctions bed file for splice site-guided

minimap2 genomic alignment.
--nvrna Use native-RNA specific alignment parameters for minimap2 (-u f -k␣
→˓14)
--quality Minimum MAPQ score of read alignment to the genome. The default is 1,

which is the lowest possible score.
-N Retain at most INT secondary alignments from minimap2 (default 0).␣
→˓Please

proceed with caution, changing this setting is only useful if you␣
→˓know

there are closely related homologs elsewhere in the genome. It will
likely decrease the quality of Flair's final results.

--quiet Dont print progress statements.

2.1.2 Notes

If you’re using human sequences, the best reference genome is GCA_000001405.15_GRCh38_no_alt_analysis_set as
described in this helpful blog post by Heng Li

If your input sequences are Oxford nanopore reads, please use Pychopper before running Flair.

If your reads are already aligned, you can convert the sorted bam output to bed12 using bam2Bed12 to supply for
flair-correct. This step smoothes gaps in the alignment.

nvrna settings: See minimap2’s manual for details.

quality: More info on MAPQ scores

2.2 flair correct

usage: flair correct -q query.bed12 [-f annotation.gtf]|[-j introns.tab] -g genome.fa␣
→˓[options]

This module corrects misaligned splice sites using genome annotations and/or short-read splice junctions.

Outputs

• <prefix>_all_corrected.bed for use in subsequent steps

• <prefix>_all_inconsistent.bed rejected alignments

• <prefix>_cannot_verify.bed (only if the) chromosome is not found in annotation

6 Chapter 2. Modules

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
https://lh3.github.io/2017/11/13/which-human-reference-genome-to-use
https://github.com/epi2me-labs/pychopper
https://lh3.github.io/minimap2/minimap2.html
http://www.acgt.me/blog/2014/12/16/understanding-mapq-scores-in-sam-files-does-37-42

Flair

2.2.1 Options

Required arguments

--query Uncorrected bed12 file, e.g. output of flair align.
--genome Reference genome in fasta format.

At least one of the following arguments is required:
--shortread Bed format splice junctions from short-read sequencing. You can

generate these from SAM format files using the junctions_from_sam
program that comes with Flair.

--gtf GTF annotation file.

Optional arguments

--help Show all options
--output Name base for output files (default: flair). You can supply an

output directory (e.g. output/flair) but it has to exist; Flair
will not create it. If you run the same command twice, Flair will
overwrite the files without warning.

--threads Number of processors to use (default 4).
--nvrna Specify this flag to make the strand of a read consistent with

the input annotation during correction.
--ss_window Window size for correcting splice sites (default 15).
--print_check Print err.txt with step checking.

2.2.2 Notes

Make sure that the genome annotation and genome sequences are compatible (if the genome sequence contains the
‘chr’ prefix, the annotations must too).

Please do use GTF instead of GFF; annotations should not split single exons into multiple entries.

2.3 flair collapse

usage: flair collapse -g genome.fa -q <query.bed> -r <reads.fq>/<reads.fa> [options]

Defines high-confidence isoforms from corrected reads. As FLAIR does not use annotations to collapse isoforms,
FLAIR will pick the name of a read that shares the same splice junction chain as the isoform to be the isoform name.
It is recommended to still provide an annotation with --gtf, which is used to rename FLAIR isoforms that match
isoforms in existing annotation according to the transcript_id field in the gtf.

Intermediate files generated by this step are removed by default, but can be retained for debugging purposes by supplying
the argument --keep_intermediate and optionally supplying a directory to keep those files with --temp_dir.

If there are multiple samples to be compared, the flair-corrected read bed files should be concatenated prior to running
flair-collapse. In addition, all raw read fastq/fasta files should either be specified after --reads with space/comma
separators or concatenated into a single file.

2.3. flair collapse 7

Flair

Please note: Flair collapse is not yet capable of dealing with large (>1G) input bed files. If you find that Flair needs
a lot of memory you may want to split the input bed file by chromosome and run these separately. We do intend to
improve this.

Outputs

• isoforms.bed

• isoforms.gtf

• isoforms.fa

If an annotation file is provided, the isoforms ID format will contain the transcript id, underscore, and then the gene id,
so it would look like ENST*_ENSG* if you’re working with the GENCODE human annotation.

If multiple TSSs/TESs are allowed (toggle with --max_ends or --no_redundant), then a -1 or higher will be ap-
pended to the end of the isoform name for the isoforms that have identical splice junction chains and differ only by their
TSS/TES.

For the gene field, the gene that is assigned to the isoform is based on whichever annotated gene has the greatest number
of splice junctions shared with the isoform. If there are no genes in the annotation which can be assigned to the isoform,
a genomic coordinate is used (e.g. chr*:100000).

2.3.1 Options

Required arguments

--query Bed file of aligned/corrected reads
--genome FastA of reference genome
--reads FastA/FastQ files of raw reads, can specify multiple files

Optional arguments

--help Show all options.
--output Name base for output files (default: flair.collapse).

You can supply an output directory (e.g. output/flair_collapse)
--threads Number of processors to use (default: 4).
--gtf GTF annotation file, used for renaming FLAIR isoforms to

annotated isoforms and adjusting TSS/TESs.
--generate_map Specify this argument to generate a txt file of read-isoform

assignments (default: not specified).
--annotation_reliant Specify transcript fasta that corresponds to transcripts

in the gtf to run annotation-reliant flair collapse; to ask flair
to make transcript sequences given the gtf and genome fa, use
--annotation_reliant generate.

Options for read support

--support Minimum number of supporting reads for an isoform; if s < 1,
it will be treated as a percentage of expression of the gene
(default: 3).

--stringent Specify if all supporting reads need to be full-length (80%
coverage and spanning 25 bp of the first and last exons).

--check_splice Enforce coverage of 4 out of 6 bp around each splice site and
(continues on next page)

8 Chapter 2. Modules

https://www.gencodegenes.org/human/

Flair

(continued from previous page)

no insertions greater than 3 bp at the splice site. Please note:
If you want to use --annotation_reliant as well, set it to
generate instead of providing an input transcripts fasta file,
otherwise flair may fail to match the transcript IDs.
Alternatively you can create a correctly formatted transcript
fasta file using gtf_to_psl

--trust_ends Specify if reads are generated from a long read method with
minimal fragmentation.

--quality Minimum MAPQ of read assignment to an isoform (default: 1).

Variant options

--longshot_bam BAM file from Longshot containing haplotype information for each␣
→˓read.
--longshot_vcf VCF file from Longshot.

For more information on the Longshot variant caller, see its github page

Transcript starts and ends

--end_window Window size for comparing transcripts starts (TSS) and ends
(TES) (default: 100).

--promoters Promoter regions bed file to identify full-length reads.
--3prime_regions TES regions bed file to identify full-length reads.
--no_redundant <none,longest,best_only> (default: none). For each unique

splice junction chain, report options include:
- none best TSSs/TESs chosen for each unique

set of splice junctions
- longest single TSS/TES chosen to maximize length
- best_only single most supported TSS/TES

--isoformtss When specified, TSS/TES for each isoform will be determined
from supporting reads for individual isoforms (default: not
specified, determined at the gene level).

--no_gtf_end_adjustment Do not use TSS/TES from the input gtf to adjust
isoform TSSs/TESs. Instead, each isoform will be determined
from supporting reads.

--max_ends Maximum number of TSS/TES picked per isoform (default: 2).
--filter Report options include:

- nosubset any isoforms that are a proper set of
another isoform are removed

- default subset isoforms are removed based on support
- comprehensive default set + all subset isoforms
- ginormous comprehensive set + single exon subset

isoforms

Other options

--temp_dir Directory for temporary files. use "./" to indicate current
directory (default: python tempfile directory).

--keep_intermediate Specify if intermediate and temporary files are to
be kept for debugging. Intermediate files include:
promoter-supported reads file, read assignments to
firstpass isoforms.

(continues on next page)

2.3. flair collapse 9

https://github.com/pjedge/longshot

Flair

(continued from previous page)

--fusion_dist Minimium distance between separate read alignments on the
same chromosome to be considered a fusion, otherwise no reads
will be assumed to be fusions.

--mm2_args Additional minimap2 arguments when aligning reads first-pass
transcripts; separate args by commas, e.g. --mm2_args=-I8g,--MD.

--quiet Suppress progress statements from being printed.
--annotated_bed BED file of annotated isoforms, required by --annotation_reliant.

If this file is not provided, flair collapse will generate the
bedfile from the gtf. Eventually this argument will be removed.

--range Interval for which to collapse isoforms, formatted
chromosome:coord1-coord2 or tab-delimited; if a range is specified,
then the --reads argument must be a BAM file and --query must be
a sorted, bgzip-ed bed file.

2.3.2 Suggested uses

Human

flair collapse -g genome.fa --gtf gene_annotations.gtf -q reads.flair_all_corrected.bed -
→˓r reads.fastq
--stringent --check_splice --generate_map --annotation_reliant generate

For novel isoform discovery in organisms with more unspliced transcripts and more overlapping genes, we recommend
using a combination of options to capture more transcripts. For example:

Yeast

flair collapse -g genome.fa --gtf gene_annotations.gtf -q reads.flair_all_corrected.bed -
→˓r reads.fastq
--stringent --no_gtf_end_adjustment --check_splice --generate_map --trust_ends

Note that if you are doing direct-RNA, this command will likely call degradation products as isoforms. If you want to
avoid this this we recommend using –annotation-reliant.

2.4 flair quantify

usage: flair quantify -r reads_manifest.tsv -i isoforms.fa [options]

Output

Isoform-by-sample counts file that can be used in the flair_diffExp and flair_diffSplice programs.

10 Chapter 2. Modules

Flair

2.4.1 Options

Required arguments

--isoforms Fasta of Flair collapsed isoforms
--reads_manifest Tab delimited file containing sample id, condition, batch,

reads.fq, where reads.fq is the path to the sample fastq file.

Reads manifest example:

sample1 condition1 batch1 mydata/sample1.fq
sample2 condition1 batch1 mydata/sample2.fq
sample3 condition1 batch1 mydata/sample3.fq
sample4 condition2 batch1 mydata/sample4.fq
sample5 condition2 batch1 mydata/sample5.fq
sample6 condition2 batch1 mydata/sample6.fq

Note: Do not use underscores in the first three fields, see below for details.

Optional arguments

--help Show all options
--output Name base for output files (default: flair.quantify). You

can supply an output directory (e.g. output/flair_quantify).
--threads Number of processors to use (default 4).
--temp_dir Directory to put temporary files. use ./ to indicate current

directory (default: python tempfile directory).
--sample_id_only Only use sample id in output header instead of a concatenation

of id, condition, and batch.
--quality Minimum MAPQ of read assignment to an isoform (default 1).
--trust_ends Specify if reads are generated from a long read method with

minimal fragmentation.
--generate_map Create read-to-isoform assignment files for each sample.
--isoform_bed isoform .bed file, must be specified if --stringent or

--check-splice is specified.
--stringent Supporting reads must cover 80% of their isoform and extend

at least 25 nt into the first and last exons. If those exons
are themselves shorter than 25 nt, the requirement becomes
'must start within 4 nt from the start' or 'end within 4 nt
from the end'.

--check_splice Enforces coverage of 4 out of 6 bp around each splice site
and no insertions greater than 3 bp at the splice site.

2.4. flair quantify 11

Flair

2.4.2 Other info

Unless --sample_id_only is specified, the output counts file concatenates id, condition and batch info for each sam-
ple. flair_diffExp and flair_diffSplice expect this information.

id sample1_condition1_batch1 sample2_condition1_batch1 sample3_condition1_batch1 ␣
→˓sample4_condition2_batch1 sample5_condition2_batch1 sample6_condition2_batch1
ENST00000225792.10_ENSG00000108654.15 21.0 12.0 10.0 10.0 14.0 13.0
ENST00000256078.9_ENSG00000133703.12 7.0 6.0 7.0 15.0 12.0 7.0

2.5 flair_diffExp

IMPORTANT NOTE: diffExp and diffSplice are not currently part of the main flair code. Instead they are supplied
as separate programs named flair_diffExp and flair_diffSplice. They take the same inputs as before.

usage: flair_diffExp -q counts_matrix.tsv --out_dir out_dir [options]

This module performs differential expression and differential usage analyses between exactly two conditions with 3 or
more replicates. It does so by running these R packages:

• DESeq2 on genes and isoforms. This tests for differential expression.

• DRIMSeq is used on isoforms only and tests for differential usage. This is done by testing if the ratio of isoforms
changes between conditions.

If you do not have replicates you can use the diff_iso_usage standalone script.

If you have more than two sample condtions, either split your counts matrix ahead of time or run DESeq2 and DRIMSeq
yourself.

Outputs

After the run, the output directory (--out_dir) contains the following, where COND1 and COND2 are the names of
the sample groups.

• genes_deseq2_MCF7_v_A549.tsv Filtered differential gene expression table.

• genes_deseq2_QCplots_MCF7_v_A549.pdf QC plots, see the DESeq2 manual for details.

• isoforms_deseq2_MCF7_v_A549.tsv Filtered differential isoform expression table.

• isoforms_deseq2_QCplots_MCF7_v_A549.pdf QC plots

• isoforms_drimseq_MCF7_v_A549.tsv Filtered differential isoform usage table

• workdir Temporary files including unfiltered output files.

2.5.1 Options

Required arguments

--counts_matrix Tab-delimited isoform count matrix from flair quantify
--out_dir Output directory for tables and plots.

12 Chapter 2. Modules

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DRIMSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Flair

Optional arguments

--help Show this help message and exit
--threads Number of threads for parallel DRIMSeq.
--exp_thresh Read count expression threshold. Isoforms in which both

conditions contain fewer than E reads are filtered out (Default E=10)
--out_dir_force Specify this argument to force overwriting of files in

an existing output directory

2.5.2 Notes

DESeq2 and DRIMSeq are optimized for short read experiments and expect many reads for each expressed gene. Lower
coverage (as expected when using long reads) will tend to result in false positives.

For instance, look at this counts table with two groups (s and v) of three samples each:

gene s1 s2 s3 v1 v2 v3
A 1 0 2 0 4 2
B 100 99 101 100 104 102

Gene A has an average expression of 1 in group s, and 2 in group v but the total variation in read count is 0-4. The
same variation is true for gene B, but it will not be considered differentially expressed.

Flair does not remove low count genes as long as they are expressed in all samples of at least one group so please be
careful when interpreting results.

Results tables are filtered and reordered by p-value so that only p<0.05 differential genes/isoforms remain. Unfiltered
tables can be found in workdir

Code requirements

This module requires python modules and R packages that are not necessary for other Flair modules (except diffSplice).

If you are not using the docker container or the conda installed version of Flair you may have to install these
separately:

1. python modules: pandas, numpy, rpy2

2. DESeq2

3. ggplot2

4. qqman

5. DRIMSeq

6. stageR

2.5. flair_diffExp 13

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://ggplot2.tidyverse.org
https://cran.r-project.org/web/packages/qqman/index.html
http://bioconductor.org/packages/release/bioc/html/DRIMSeq.html
http://bioconductor.org/packages/release/bioc/html/stageR.html

Flair

2.6 flair diffSplice

IMPORTANT NOTE: diffExp and diffSplice are not currently part of the main flair code. Instead they are supplied
as separate programs named flair_diffExp and flair_diffSplice. They take the same inputs as before.

usage: flair_diffSplice -i isoforms.bed -q counts_matrix.tsv [options]

This module calls alternative splicing (AS) events from isoforms. Currently supports the following AS events:

• intron retention (ir)

• alternative 3’ splicing (alt3)

• alternative 5’ splicing (alt5)

• cassette exons (es)

If there are 3 or more samples per condition, then you can run with --test and DRIMSeq will be used to calculate
differential usage of the alternative splicing events between two conditions. See below for more DRIMSeq-specific
arguments.

If conditions were sequenced without replicates, then the diffSplice output files can be input to the diffs-
plice_fishers_exact script for statistical testing instead.

Outputs

After the run, the output directory (--out_dir) contains the following tab separated files:

• diffsplice.alt3.events.quant.tsv

• diffsplice.alt5.events.quant.tsv

• diffsplice.es.events.quant.tsv

• diffsplice.ir.events.quant.tsv

If DRIMSeq was run (where A and B are conditionA and conditionB, see below):

• drimseq_alt3_A_v_B.tsv

• drimseq_alt5_A_v_B.tsv

• drimseq_es_A_v_B.tsv

• drimseq_ir_A_v_B.tsv

• workdir Temporary files including unfiltered output files.

2.6.1 Options

Required arguments

--isoforms Isoforms in bed format from Flair collapse.
--counts_matrix Tab-delimited isoform count matrix from Flair quantify.
--out_dir Output directory for tables and plots.

14 Chapter 2. Modules

Flair

Optional arguments

--help Show all options.
--threads Number of processors to use (default 4).
--test Run DRIMSeq statistical testing.
--drim1 The minimum number of samples that have coverage over an

AS event inclusion/exclusion for DRIMSeq testing; events
with too few samples are filtered out and not tested (6).

--drim2 The minimum number of samples expressing the inclusion of
an AS event; events with too few samples are filtered out
and not tested (3).

--drim3 The minimum number of reads covering an AS event
inclusion/exclusion for DRIMSeq testing, events with too
few samples are filtered out and not tested (15).

--drim4 The minimum number of reads covering an AS event inclusion
for DRIMSeq testing, events with too few samples are
filtered out and not tested (5).

--batch If specified with --test, DRIMSeq will perform batch correction.
--conditionA Specify one condition corresponding to samples in the

counts_matrix to be compared against condition2; by default,
the first two unique conditions are used. This implies --test.

--conditionB Specify another condition corresponding to samples in the
counts_matrix to be compared against conditionA.

--out_dir_force Specify this argument to force overwriting of files in an
existing output directory

2.6.2 Notes

Results tables are filtered and reordered by p-value so that only p<0.05 differential genes/isoforms remain. Unfiltered
tables can be found in workdir

For a complex splicing example, please note the 2 alternative 3’ SS, 3 intron retention, and 4 exon skipping events in
the following set of isoforms that flair diffSplice would call and the isoforms that are considered to include or
exclude the each event:

a3ss_feature_id coordinate sample1 sample2 ... isoform_ids
inclusion_chr1:80 chr1:80-400_chr1:80-450 75.0 35.0 ... a,e
exclusion_chr1:80 chr1:80-400_chr1:80-450 3.0 13.0 ... c

(continues on next page)

2.6. flair diffSplice 15

Flair

(continued from previous page)

inclusion_chr1:500 chr1:500-650_chr1:500-700 4.0 18.0 ... d
exclusion_chr1:500 chr1:500-650_chr1:500-700 70.0 17.0 ... e

ir_feature_id coordinate sample1 sample2 ... isoform_ids
inclusion_chr1:500-650 chr1:500-650 46.0 13.0 ... g
exclusion_chr1:500-650 chr1:500-650 4.0 18.0 ... d
inclusion_chr1:500-700 chr1:500-700 46.0 13.0 ... g
exclusion_chr1:500-700 chr1:500-700 70.0 17.0 ... e
inclusion_chr1:250-450 chr1:250-450 50.0 31.0 ... d,g
exclusion_chr1:250-450 chr1:250-450 80.0 17.0 ... b

es_feature_id coordinate sample1 sample2 ... isoform_ids
inclusion_chr1:450-500 chr1:450-500 83.0 30.0 ... b,c
exclusion_chr1:450-500 chr1:450-500 56.0 15.0 ... f
inclusion_chr1:200-250 chr1:200-250 80.0 17.0 ... b
exclusion_chr1:200-250 chr1:200-250 3.0 13.0 ... c
inclusion_chr1:200-500 chr1:200-500 4.0 18.0 ... d
exclusion_chr1:200-500 chr1:200-500 22.0 15.0 ... h
inclusion_chr1:400-500 chr1:400-500 75.0 35.0 ... e,a
exclusion_chr1:400-500 chr1:400-500 56.0 15.0 ... f

16 Chapter 2. Modules

CHAPTER

THREE

ADDITIONAL PROGRAMS

When you conda install flair, the following helper programs will be in your $PATH:

3.1 diff_iso_usage

usage: diff_iso_usage counts_matrix colname1 colname2 diff_isos.txt

Requires four positional arguments to identify and calculate significance of alternative isoform usage between two
samples using Fisher’s exact tests: (1) counts_matrix.tsv from flair-quantify, (2) the name of the column of the first
sample, (3) the name of the column of the second sample, (4) txt output filename containing the p-value associated
with differential isoform usage for each isoform. The more differentially used the isoforms are between the first and
second condition, the lower the p-value.

Output file format columns are as follows:

• gene name

• isoform name

• p-value

• sample1 isoform count

• sample2 isoform count

• sample1 alternative isoforms for gene count

• sample2 alternative isoforms for gene count

3.2 diffsplice_fishers_exact

usage: diffsplice_fishers_exact events.quant.tsv colname1 colname2 out.fishers.tsv

Identifies and calculates the significance of alternative splicing events between two samples without replicates using
Fisher’s exact tests. Requires four positional arguments: (1) flair-diffSplice tsv of alternative splicing calls for a
splicing event type, (2) the name of the column of the first sample, (3) the name of the column of the second sample,
and (4) tsv output filename containing the p-values from Fisher’s exact tests of each event.

Output

The output file contains the original columns with an additional column containing the p-values appended.

17

Flair

3.3 fasta_seq_lengths

usage: fasta_seq_lengths fasta outfilename [outfilename2]

3.4 junctions_from_sam

Usage: junctions_from_sam [options]

Options:
-h, --help show this help message and exit
-s SAM_FILE SAM/BAM file of read alignments to junctions and

the genome. More than one file can be listed,
but comma-delimited, e.g file_1.bam,file_2.bam

--unique Only keeps uniquely aligned reads. Looks at NH
tag to be 1 for this information.

-n NAME Name prefixed used for output BED file.
Default=junctions_from_sam

-l READ_LENGTH Expected read length if all reads should be of
the same length

-c CONFIDENCE_SCORE The mininmum entropy score a junction
has to have in order to be considered
confident. The entropy score =
-Shannon Entropy. Default=1.0

-j FORCED_JUNCTIONS File containing intron coordinates
that correspond to junctions that will be
kept regardless of the confidence score.

-v Will run the program with junction strand ambiguity
messages

3.5 mark_intron_retention

usage: mark_intron_retention in.psl|in.bed out_isoforms.psl out_introns.txt

Assumes the psl has the correct strand information

Requires three positional arguments to identify intron retentions in isoforms:

• psl of isoforms

• psl output filename

• txt output filename for coordinates of introns found.

Outputs

• an extended psl with an additional column containing either values 0 or 1 classifying the isoform as either
spliced or intron-retaining, respectively

• txt file of intron retentions with format isoform name chromosome intron 5' coordinate intron 3'
coordinate.

Note: A psl or bed file with more additional columns will not be displayed in the UCSC genome browser, but can be
displayed in IGV.

18 Chapter 3. Additional programs

Flair

3.6 mark_productivity

usage: mark_productivity reads.psl annotation.gtf genome.fa > reads.productivity.psl

3.7 normalize_counts_matrix

usage: normalize_counts_matrix matrix outmatrix [cpm/uq/median] [gtf]

Gtf if normalization by protein coding gene counts only

3.8 plot_isoform_usage

plot_isoform_usage <isoforms.psl>|<isoforms.bed> counts_matrix.tsv gene_name

Visualization script for FLAIR isoform structures and the percent usage of each isoform in each sample for a given
gene. If you supply the isoforms.bed file from running predictProductivity, then isoforms will be filled according
to the predicted productivity (solid for PRO, hatched for PTC, faded for NGO or NST). The gene name supplied should
correspond to a gene name in your isoform file and counts file.

The script will produce two images, one of the isoform models and another of the usage proportions.

The most highly expressed isoforms across all the samples will be plotted.

The minor isoforms are aggregated into a gray bar. You can toggle min_reads or color_palette to plot more isoforms.
Run with –help for options

Outputs

• gene_name_isoforms.png of isoform structures

• gene_name_usage.png of isoform usage by sample

For example:

positional arguments:
isoforms isoforms in psl/bed format
counts_matrix genomic sequence

(continues on next page)

3.6. mark_productivity 19

Flair

20 Chapter 3. Additional programs

Flair

(continued from previous page)

gene_name Name of gene, must correspond with the gene names in
the isoform and counts matrix files

options:
-h, --help show this help message and exit
-o O prefix used for output files (default=gene_name)
--min_reads MIN_READS

minimum number of total supporting reads for an
isoform to be visualized (default=6)

-v VCF, --vcf VCF VCF containing the isoform names that include each
variant in the last sample column

--palette PALETTE provide a palette file if you would like to visualize
more than 7 isoforms at once or change the palette
used. each line contains a hex color for each isoform

3.9 predictProductivity

usage: predictProductivity -i isoforms.bed -f genome.fa -g annotations.gtf

Annotated start codons from the annotation are used to identify the longest ORF for each isoform for predicting isoform
productivity. Requires three arguments to classify isoforms according to productivity: (1) isoforms in psl or bed for-
mat, (2) gtf genome annotation, (3) fasta genome sequences. Bedtools must be in your $PATH for predictProductivity
to run properly.

Output

Outputs a bed file with either the values PRO (productive), PTC (premature termination codon, i.e. unproductive), NGO
(no start codon), or NST (has start codon but no stop codon) appended to the end of the isoform name. When isoforms
are visualized in the UCSC genome browser or IGV, the isoforms will be colored accordingly and have thicker exons
to denote the coding region.

options:
-h, --help show this help message and exit
-i INPUT_ISOFORMS, --input_isoforms INPUT_ISOFORMS

Input collapsed isoforms in psl or bed12 format.
-g GTF, --gtf GTF Gencode annotation file.
-f GENOME_FASTA, --genome_fasta GENOME_FASTA

Fasta file containing transcript sequences.
--quiet Do not display progress
--append_column Append prediction as an additional column in file
--firstTIS Defined ORFs by the first annotated TIS.
--longestORF Defined ORFs by the longest open reading frame.

3.9. predictProductivity 21

https://github.com/arq5x/bedtools2/

Flair

22 Chapter 3. Additional programs

CHAPTER

FOUR

FILE CONVERSION SCRIPTS

4.1 bam2Bed12

usage: bam2Bed12 -i sorted.aligned.bam
options:
-h, --help show this help message and exit
-i INPUT_BAM, --input_bam Input bam file.
--keep_supplementary Keep supplementary alignments

A tool to convert minimap2 BAM to Bed12.

4.2 bed_to_psl

usage: bed_to_psl chromsizes bedfile pslfile

chromsizes is a tab separated file of chromosome sizes, needed to make the psl file genome browser compatible. Here
is one for GRCh38/hg38.

4.3 psl_to_bed

usage: psl_to_bed in.psl out.bed

4.4 sam_to_map

usage: sam_to_map sam outfile

23

https://raw.githubusercontent.com/igvteam/igv/master/genomes/sizes/hg38.chrom.sizes

Flair

24 Chapter 4. File conversion scripts

CHAPTER

FIVE

FLAIR2 CAPABILITIES

FLAIR2 has an updated isoform detection algorithm and an added feature of variant-aware isoform detection.

5.1 Performance increases

FLAIR2 run with the --annotation_reliant argument invokes an alignment of the reads to an annotated transcrip-
tome first, followed by novel isoform detection. This can be run with or without --check_splice, which enforces
higher quality matching specifically around each splice site for read-to-isoform assignment steps.

flair collapse --check_splice --annotation_reliant generate -f annotation.gtf -g genome.
→˓fa -r reads.fa -q corrected.bed [options]

If you are running collapse with the same transcript reference multiple times, you can specify the previously generated
transcript sequence file to the --annotation_reliant argument instead.

5.2 Variant integration

FLAIR has two modalities for phasing variants to discover variant-aware transcript models. The first uses phasing infor-
mation from longshot, which is comprised of a phase set determined for each read and a set of variants corresponding
to each phase set. For the second modality, FLAIR can approach phasing variants that is agnostic to ploidy, which
may be worthy of exploration if working with RNA edits and potential cancer-related aneuploidies: 1) given variant
calls, FLAIR tabulates the most frequent combinations of variants present in each isoform from the supporting read
sequences; 2) from the isoform-defining collapse step, FLAIR generates a set of reads assigned to each isoform; so 3)
isoforms that have sufficient read support for a collection of mismatches are determined. This latter method of phasing
focuses solely on frequency of groups of mismatches that co-occur within reads and does not use ploidy information
to refine haplotypes, allowing for the generation of multiple haplotypes within a gene and transcript model.

5.2.1 Longshot

Longshot provides phased read outputs, which can be supplied to flair-collapse via --longshot_vcf and
--longshot_bam. The outputs of collapse are the following: 1) isoform models as a bed file, 2) the subset of variants
from the longshot vcf that were used, and 3) isoform sequences with variants as a fasta file. The isoform models and
variants can be viewed by aligning the isoform sequences and using IGV or other visualization tools. .. code:: sh

longshot –bam flair.aligned.bam –ref genome.fa –out longshot.vcf –out_bam longshot.bam
–min_allele_qual 3 -F samtools index longshot.bam

flair collapse -r reads.fa -q corrected.bed -g genome.fa –longshot_vcf longshot.vcf –longshot_bam
flair.longshot.bam [options]

25

Flair

minimap2 -ax splice –secondary=no genome.fa flair.collapse.isoforms.fa > flair.collapse.isoforms.fa.sam
samtools sort flair.collapse.isoforms.fa.sam -o flair.collapse.isoforms.fa.bam samtools index
flair.collapse.isoforms.fa.bam

5.2.2 Any vcf

FLAIR2 can also take a vcf agnostic to the variant caller and spike variants in given any isoform model file. If enough
supporting reads for an individual isoform contain the same pattern of variants, then FLAIR will create an additional
isoform with _PSX appended to the name. Flair-collapse needs to be run with --generate_map. .. code:: sh

flair collapse -r reads.fa -q corrected.bed -g genome.fa –generate_map [options]

assign_variants_to_transcripts –bam flair.aligned.bam -i flair.collapse.isoforms.bed -v variants.vcf –map
flair.collapse.isoform.read.map.txt –bed_out out.bed –map_out out.map > out.vcf

psl_to_sequence out.bed genome.fa out.fa -v out.vcf

minimap2 -ax splice –secondary=no genome.fa out.fa > out.fa.sam samtools sort out.fa.sam -o out.fa.bam
samtools index out.fa.bam

26 Chapter 5. FLAIR2 capabilities

CHAPTER

SIX

OTHER WAYS TO RUN FLAIR MODULES

For convenience, multiple FLAIR modules can be run in the same command. In place of a single module name, multiple
module numbers can be specified (module numbers: align=1, correct=2, collapse=3, collapse-range=3.5, quantify=4,
diffExp=5, diffSplice=6). All arguments for the modules that will be run must be provided. For example, to run the
align, correct, and collapse modules, the command might look like:

flair 123 -r reads.fa -g genome.fa -f annotation.gtf -o flair.output --temp_dir temp_
→˓flair [optional arguments]

A beta version of the collapse module, called collapse-range, has been developed. The corrected reads are divided into
many independent regions, which are then subject to isoform calling separately and parallelized over the number of
threads specified. This dramatically decreases the memory footprint of intermediate files and increases the speed in
which the module runs without altering the final isoforms. This version can be invoked by specifying collapse-range
as the module (or 3.5 if using numbers). An additional program, bedPartition, needs to be in your $PATH.

flair collapse-range -r reads.bam -q query.bed -g genome.fa -f annotation.gtf -o flair.
→˓output --temp_dir temp_flair [optional arguments]

If you would prefer not to use python’s multiprocessing module, a bash script has also been provided
(run_flair_collapse_ranges.sh) that runs collapse-range for the user that parallelizes using GNU parallel, which
you can alter as they see fit for their system.

27

http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/

Flair

28 Chapter 6. Other ways to run FLAIR modules

CHAPTER

SEVEN

OTHER ENVIRONMENTS

The easiest way to install Flair and all of its dependencies is via conda:

conda create -n flair -c conda-forge -c bioconda flair
conda activate flair
flair [align/correct/...]

It is also possible to get the full Flair setup as a docker image:

docker pull brookslab/flair:latest
docker run -w /usr/data -v [your_path_to_data]:/usr/data brookslab/flair:latest flair␣
→˓[align/correct/...]

7.1 Other methods (not recommended)

Flair consists of six modules. The first three are align, correct, and collapse. They are the most used, so we will
refer to them here as basic Flair.

The other three modules are quantify, flair_diffExp, and flair_diffSplice. Together with basic Flair these
are called full Flair. These three additional modules have more dependencies than basic Flair so if you don’t need them,
you will not need the modules listed under 5.

There are other ways to install Flair:

• pip install flair-brookslab will install basic Flair and all necessary python modules (see below)

• Download the latest release

• Use git to check out the current flair repository

7.1.1 Requirements

1. Bedtools

2. samtools

3. minimap2

If you do not use pip install or conda env create`, you will also need:

4. python v3.6+ and python modules:

• numpy=1.9.*

• tqdm

29

https://github.com/BrooksLabUCSC/flair/releases
https://github.com/BrooksLabUCSC/flair.git
https://github.com/arq5x/bedtools2/
https://github.com/samtools/samtools/releases
https://github.com/lh3/minimap2

Flair

• ncls

• pybedtools

• mappy

• pysam=v0.8.4+

5. full Flair additional python modules:

• Cython

• pandas

• rpy2=2.9.*

• R

• r-ggplot2=2.2.1

• r-qqman

• bioconductor-deseq2

• bioconductor-drimseq

• bioconductor-stager

• matplotlib

• seaborn

7.1.2 Pip install

pip install flair-brookslabwill put the latest Flair release in your $PATH, as well as the helper scripts discussed
in this manual. It also installs all python modules needed to run basic Flair. If you want to use full Flair, install the
packages listed under point 5 in the list above.

7.1.3 Download the latest release

Navigate to the Flair release page and select one of the source code files under Assets. Exctract the file and navigate
to the resulting flair directory. Add Flair and the helper scripts to your $PATH for instance (in Linux) with export
PATH=$(pwd)/bin:$PATH.

Make sure to (pip) install the python modules listed above. If you have conda, you can create a basic Flair environment
using

conda env create -f misc/flair_basic_conda_env.yaml

7.1.4 Download the latest code

Check out the current Flair repository from github. Please be aware that while this may have the latest bug fixes, it’s
quite possible that new bugs were introduced. This method is only useful if you have reported a problem and a Flair
developer lets you know it has been fixed.

Once you have cloned the repository, navigate to the /flair directory. Follow the steps as described under Download
the latest release.

30 Chapter 7. Other environments

https://github.com/BrooksLabUCSC/flair/releases
https://github.com/BrooksLabUCSC/flair.git
https://github.com/BrooksLabUCSC/flair/issues

CHAPTER

EIGHT

TESTING FLAIR

Prerequisites:

• flair and flair scripts are in your $PATH (see below)

• You have a copy of the flair/test directory (e.g. git clone git@github.com:BrooksLabUCSC/flair.
git)

• GNU make

Flair is in your $PATH if you used conda install -c conda-forge -c bioconda flair.

If you downloaded the latest release from github or cloned the flair repository:

export PATH=/path/to/flair/src/flair:/path/to/flair/bin:$PATH

Move to the flair/test directory, then run make test.

If this is the first time, make will download some sequences from the UCSC Genome Browser download page and store
them as test_input/genome.fa.

make test tests all six flair modules and two helper programs. You can also test them individually using:

• make test-align

• make test-correct

• make test-collapse

• make test-quantify

• make test-diffexp

• make test-diffsplice

• make test-predict-productivity

• make test-diff-iso-usage

make outputs a lot of information. If a test fails, it will stop with an error and not run any additional tests. Errors look
like this:

make: *** [makefile:71: test-predict-productivity] Error 2

You can usually find more information in the lines preceding the error. If you cannot figure out the problem, please
create a ticket.

31

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes
https://github.com/BrooksLabUCSC/flair/issues

Flair

32 Chapter 8. Testing flair

CHAPTER

NINE

EXAMPLE FILES

We have provided the following example files here:

• star.firstpass.gm12878.junctions.3.tab, a file of splice junctions observed from short read sequencing
of GM18278 that can be used in the correction step with -j. Junctions with fewer than 3 uniquely mapping reads
have been filtered out.

• promoter.gencode.v27.20.bed, promoter regions determined from ENCODE promoter chromatin states for
GM12878 and 20 bp around annotated TSS in GENCODE v27. Can be supplied to flair-collapse with -p to
build the initial firstpass set with only reads with start positions falling within these regions

Other downloads:

• Native RNA Pass reads Running these 10 million nanopore reads from fastq through flair align, correct, and
collapse modules to assembled isoforms with 8 threads requires ~3.5 hours (includes ~2.5 hours of minimap2
alignment)

• NanoSim_Wrapper.py, a wrapper script written for simulating nanopore transcriptome data using Nanosim

33

https://people.ucsc.edu/~atang14/flair/example_files/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md
https://github.com/BrooksLabUCSC/labtools/blob/master/NanoSim_Wrapper.py
https://github.com/bcgsc/NanoSim

Flair

34 Chapter 9. Example Files

CHAPTER

TEN

FAQ

10.1 1. Flair collapse uses too much memory, what can I do?

Flair’s memory requirements increase with larger input files. If your bed file is over 1 Gigabyte, consider splitting it by
chromosome and then running separately on each file.

35

Flair

36 Chapter 10. FAQ

CHAPTER

ELEVEN

CITE FLAIR

If you use or discuss FLAIR, please cite the following paper:

Tang, A.D., Soulette, C.M., van Baren, M.J. et al. Full-length transcript characterization of SF3B1 mutation in chronic
lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 11, 1438 (2020).

37

https://www.nature.com/articles/s41467-020-15171-6
https://www.nature.com/articles/s41467-020-15171-6

Flair

38 Chapter 11. Cite FLAIR

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

39

	Installing Flair
	Modules
	flair align
	Options
	Required arguments
	Optional arguments

	Notes

	flair correct
	Options
	Required arguments
	Optional arguments

	Notes

	flair collapse
	Options
	Required arguments
	Optional arguments

	Suggested uses

	flair quantify
	Options
	Required arguments
	Optional arguments

	Other info

	flair_diffExp
	Options
	Required arguments
	Optional arguments

	Notes
	Code requirements

	flair diffSplice
	Options
	Required arguments
	Optional arguments

	Notes

	Additional programs
	diff_iso_usage
	diffsplice_fishers_exact
	fasta_seq_lengths
	junctions_from_sam
	mark_intron_retention
	mark_productivity
	normalize_counts_matrix
	plot_isoform_usage
	predictProductivity

	File conversion scripts
	bam2Bed12
	bed_to_psl
	psl_to_bed
	sam_to_map

	FLAIR2 capabilities
	Performance increases
	Variant integration
	Longshot
	Any vcf

	Other ways to run FLAIR modules
	Other environments
	Other methods (not recommended)
	Requirements
	Pip install
	Download the latest release
	Download the latest code

	Testing flair
	Example Files
	FAQ
	1. Flair collapse uses too much memory, what can I do?

	Cite FLAIR
	Indices and tables

